

Greening Energy Market and Finance First GrEnFIn Summer School

Team Works Presentation:
Section 7 - The most significant effects of climate change (Vulnerability matrix)

Students:

Gabriele Cortini Giacomo Cristoni Anja Duranovic Moaz Elsayed Sofia Gomez Tamayo Loan Hemery

Vulnerability

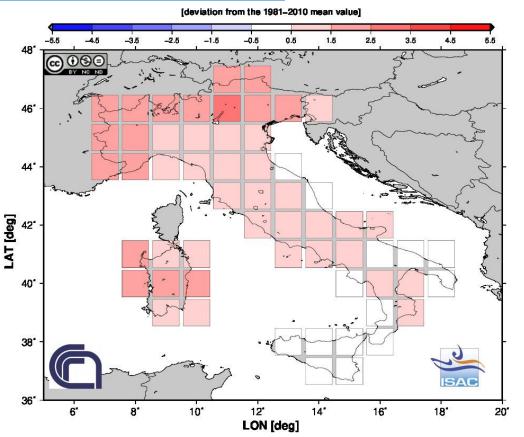
- "[Vulnerability is] the propensity or predisposition to be adversely affected.
 Vulnerability encompasses a variety of concepts and elements including sensitivity or susceptibility to harm and lack of capacity to cope and adapt."
- Vulnerability = Risk (predicted adverse climate impacts) Adaptation**
- "Vulnerability assessment is more than measuring potential harm using information about climate impacts. It includes an assessment of the region's or sector's ability to adapt." **
 - Risk → Analysis of the solar installation's exposure to a given climate change effect and its sensitivity to this effect → Vulnerability matrix
 - Adaptation measures
- Vulnerability matrices for two different locations:
 - o Bologna, Italy
 - Manila, Philippines
- Climate change effects that we analyse >> >> >>

Sensitivity matrix

Object	Area	Air temperature increase	Rainfall	Average wind speed change	Sea level rise	Storms	Flooding	Wild fire	Air quality
	Mechanical damage to installations								
Solar instalation	Energy production from installations								
	Access to the installation								

Climate change effects that we analyse:

- Air temperature increase
- Storms
- Flooding
- Wild fire
- Air quality


Vulnerability matrix for Bologna, Italy

		Exposure			
		Low	Medium	High	
t y	Low				
Sensitivity	Medium	Air temperature increase Air quality			
	High	Flooding	Wild fire	Storms	

The mean temperature - from 1981 to 2010

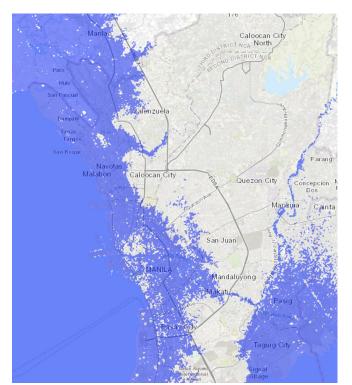
Analysis implemented by SAC CNR Bologna http://www.isac.cnr.it/~climstor/climate/latest_month_TMM.html

AIR QUALITY:

Number of days in 2017 in which the daily average exceeds 50µg/m^3 (Emilia Romagna, Italy) https://apps.arpae.it/qualita-aria/bollettino-qa-provinciale/bo

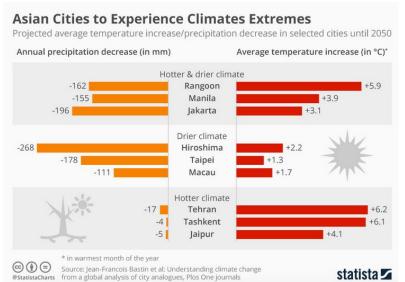
The other effects in our vulnerability matrix:

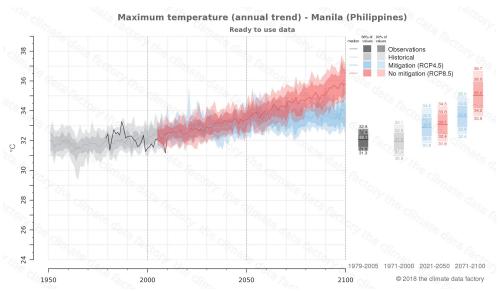
- Storms: Two are the main catastrophic effects
 - 1) Damage to the system > stop production
 - 2) Storms dropped near the solar farm: installation of surge protector and lightning-rod
- Wild fire: we referred mostly to arsons
- Flooding: very unlikely in Bologna



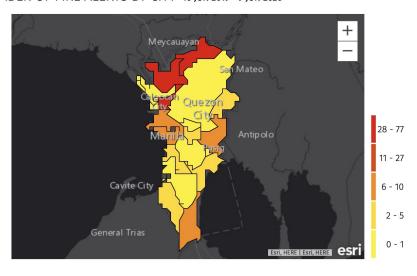
		Exposure			
A 1999		Low	Medium	High	
Sensitivity	Low		Average speed wind change	Rain change	
	Medium		Air quality Wild fire Air temperature increase		
	High			Storms Flooding Sea level rise	

Flood simulation - 5m (left) and 10m (right)

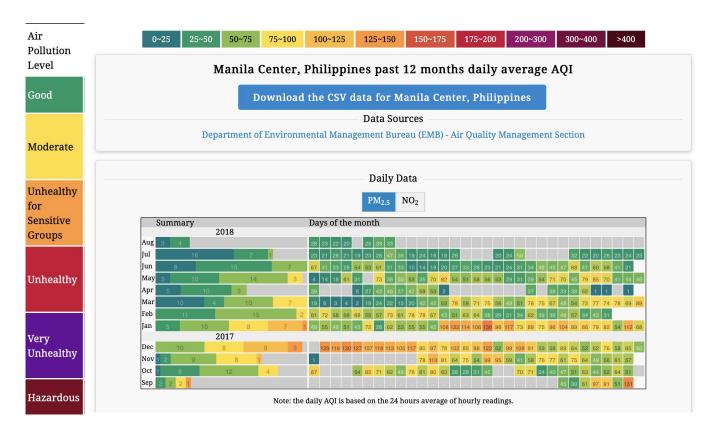




Air temperature increase scenarios - medium level

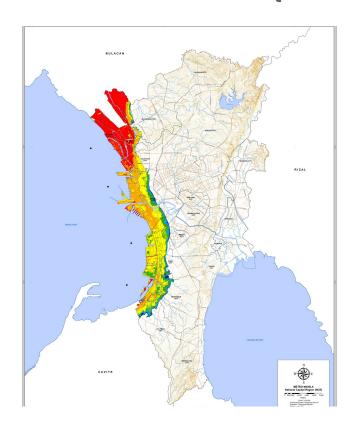


Wildfire alerts over the past year - medium level


GREATEST NUMBER OF FIRE ALERTS BY CITY 10 JUN 2019 - 9 JUN 2020

Subregion	Province	#
Kalookan City	Metropolitan Manila	77
Valenzuela	Metropolitan Manila	27
Muntinlupa	Metropolitan Manila	10
Manila	Metropolitan Manila	7
Pasig City	Metropolitan Manila	7
Las Piñas	Metropolitan Manila	5
Marikina	Metropolitan Manila	3 •
Pasay City	Metropolitan Manila	2 •
Mandaluyong	Metropolitan Manila	1 •
Taguig	Metropolitan Manila	1 •

The air quality index PM 2.5 for Manila




Rising sea level, Tropical Storms

Tsunamis, earthquakes

References

Air Quality Historical Data Platform. Retrieved June 10, 2020, from https://agicn.org/data-platform

Downing, T.E. & Patwardhan, A. (2005). *Assessing vulnerability for climate adaptation*. In book: Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures, Chapter: 3, Publisher: Cambridge University Press, Editors: B. Lim, E. Spanger-Siegfried, pp.67-89.

Global Forest Watch. *Great number of fire alerts by city.* Retrieved June 10, 2020, from <a href="https://fires.globalforestwatch.org/report/index.html#aoitype=GLOBAL&reporttype=globalcountryreport&country=Philippi nes&aois=Metropolitan%20Manila&dates=fYear-2019!fMonth-6!fDay-10!tYear-2020!tMonth-6!tDay-9

FloodMap.net (2020). Elevation Map, Sea Level Rise Map. Retrieved June 10, 2020, from https://www.floodmap.net/

IPCC Report Glossary. Retrieved June 10, 2020, from https://www.ipcc.ch/report/sr15/glossary/

NASA (2020). How Do Hurricanes Form?. Retrieved June 10, 2020, from https://spaceplace.nasa.gov/hurricanes/en/

Patt, A., Pfenninger, S., & Lilliestam, J. (2013). Vulnerability of solar energy infrastructure and output to climate change. *Climatic change*, *121*(1), 93-102.

http://www.isac.cnr.it/~climstor/climate/latest_month_TMM.html

Philippine Institute of Volcanology and Seismology. *Press release: dostphivolcs promotes tsunami awareness and preparedness in metro manila*. Retrieved June 10, 2020, from https://www.phivolcs.dost.gov.ph/index.php/news/7655-press-release-dost-phivolcs-promotes-tsunami-awareness-and-preparedness-in-metro-manila

References

Sengupta, S., Lee, C. (2020, February 13). A Crisis Right Now: San Francisco and Manila Face Rising Seas. *The New York Times*. Retrieved from

https://www.nytimes.com/interactive/2020/02/13/climate/manila-san-francisco-sea-level-rise.html

The climate data factory (2019). *Maximum temperature (annual trend)– Manila (Philippines)*. Retrieved June 10, 2020, from https://theclimatedatafactory.com/product/maximum-temperature-manila-philippines/

The European Climate Adaptation Platform Climate-ADAPT. Assessing risks and vulnerabilities to climate change. Retrieved

June 10, 2020, from: https://climate-adapt.eea.europa.eu/knowledge/tools/adaptation-support-tool/step-2

ARPAE. Qualità dell'aria: provincia di Bologna. Retrieved June 10, 2020, from https://apps.arpae.it/qualita-aria/bollettino-ga-provinciale/bo

Buchholz, K. (2019, July 25). Asian Cities to Experience Never Before Seen Climate Extremes. Statista. Retrieved June 10, 2020, from https://www.statista.com/chart/18807/changes-to-climate-in-asia-by-2050/

Maps of World (2020). *Map showing recent earthquake in Philippines*. Retrieved June 10, 2020, from https://www.mapsofworld.com/thematic-maps/earthquake/philippines.html

